

+₀C₀U₀O+|%C%++€|+₩E₀Q+Λ+ΧC€+₀O%H₀H

FINAL RESULTS AND NEXT STEPS

الإتحـاد العـام لقـاولات المـغرب +هEo +هEo+ +۵Eo+05+ 1 +E00I+≤21 1 ME4O2⊖ Confédération Générale des Entreprises du Maroc

4 MAY, 2023 CASABLANCA

المكتب الوطني للكهرباء و الماء الصالح للشرب Office National de l'Electricité et de l'Eau Potable

PROJECT OVERVIEW

PROJECT OVERVIEW

CGEM

PHASE I

The goal of the first phase was to develop a **comprehensive overview of the market for electric vehicles and charging infrastructure in Morocco**. Information gathered during this phase served as contextual backing for the roadmap development in phase 2.

PHASE II

The second phase was focused on developing an internationally benchmarked **EV and charging roadmap for Morocco** based on the aforementioned pillars. Recommendations identified in this phase were used to inform the roadmap and policy plan presented in the final report.

The final roadmap presents the recommendations formulated in phase 2 and based on contextual information from phase 1 in a roadmap overview until 2035. The recommendations are combined to form a four-year policy plan for 2023-2026.

INTERVIEWS

National Goverment

- Ministère du Transport et de la Logistique
- Ministère de la transition énergétique et de développement durable
- Ministère de l'économie et des finances
- Ministère de l'industrie et du commerce
- Ministère de l'Intérieur
- Institut Marocain de la Normalisation (IMANOR)

Private Sector

- Emob
- EMVC
- Afrimobility
- Tesla Group
- AIVAM

1. LOCAL CONTEXT LOCAL EV AND CHARGING INFRASTRUCTURE MARKET

CURRENT ELECTRIC MOBILITY

Development of the Moroccan new car market [units/year]

200.000 177.359 175.360 168.593 165.918 161.410 14.285 13.380 160.000 18.224 133.308 120.000 5,2% 3,4% 155**.213** 163.074 80.000 154.123 148.189 143.186 116.983 6.5% 8.0% 40.000 0 2017 2018 2021 2022 2019 2020 VUI ----- FV Marché (%) VP

Sales of hybrid and electric vehicles [units/year]

CURRENT ELECTRIC MOBILITY

EV Adoption

More than 500 electric vehicles registered in Morocco, more than 1200 plug-in hybrid vehicles and more than 14000 hydrid vehicles.

Charging Network

The charging network currently consists of 152 public charging points in operation (large share is located along the highway between Tangier and Agadir) and more than 650 in companies, automotive branch offices, Ministeries...

Local Manufacturing

The first fabrication chain for EV charging stations in Morocco with the fabrication process in 2023 with a capacity of 3600 terminals annually was established in 2020 in Benguerir.

Targets

The public administration aims to raise the share of hybrid and electric vehicles in the government fleet to 30% and to reduce fuel consumption by 10% in 2021.

EV Policy

Morocco introduced a VAT tax reduction for importers and distributors of eco-friendly cars. Excise duties have been reduced to 2.5% for hybrid and electric vehicles and hybrid and electric vehicles are exempted from the luxury goods and circulating taxes

Emission standards

As of August 2021, vehicles sold in Morocco have to comply with Euro 6 emission standards.

- The main takeaway of this high-level TCO analysis is that for most vehicle types, the TCO of the battery electric vehicle is higher compared to its fossil fuel counterpart.
 - 2/3 wheelers are the single vehicle type for which the BEV is the more cost attractive solution.

TOTAL COST OF OWNERSHIP

For buses, financial incentives are required to enable and accelerate the adoption of EVs.

TOTAL COST OF OWNERSHIP

INTERNATIONAL BENCHMARK

	The Netherlands	UK	Ireland	US	Egypt
	703 000 EV, 70 000 chargers	660 000 EV 40 496 chargers	47 000 EV 1900 chargers	1 700 000 EV 130 000 chargers	~1000 EV 400 chargers
	EV-charging infrastructure frontrunner	Extensive and pragmatic governmental growth support	Centralised electricity market	Strong incentives and policy support on federal level	
EV Market Overview	Independent market model, CPO's and DSO's can be separate.	Independent and unique e-mobility market model	Integrated model,	Variance in local regulation frameworks	General plan outlining goals for charging stations in the short-term [2]
	Incentives and subsidies for R&D&I and competition	Wide variety of active stakeholders	charging infrastructure as DSO main activity	Market model highly competitive, yet fragmentation due to bottom-up market	
Governance of EV policy	One coordinating ministry	Office for Low Emission Vehicles, a cooperation of multiple ministries	Sustainable Energy Authority of Ireland (SEAI)	Presidential directives, congress laws (acts), several ministries programs	Fully state-owned holding under the Ministry of Electricity and Renewable Energy (MoEE)

INTERNATIONAL BENCHMARK

	The Netherlands	UK	Ireland	US	Egypt
	Green Deals, public- private	Public private partnership	Cross-sector consortium of private, public and academia		state-owned holding main responsible party for energy sector
Policy - Organisational	Grid operator organisation	Office for low emission vehicles	Grid operator launching authority for charging	Coordination program to foster public- private partnerships, projects, publications and toolsets	Authority to develop & introduce energy technologies, e- mobility small part of the agenda 10 companies and consortia had qualified to tender for the management and operation of electric car charging stations
	National knowledge platform charging infrastructure City air quality programs	Framework of EV charging projects with different approaches	Framework of EV charging projects with different approaches		Third separate entity to regulate energy market

INTERNATIONAL BENCHMARK

	The Netherlands	UK	Ireland	US	Egypt
	Grid operator	Tender by local governments to private parties.		Charging must comply with local, state, and national regulations	The sector comprises regional generative companies, regional
Governance and stakeholder roles	rganization) installed n the beginning for a short period, then changed to		Grid operator initially installs (monopoly), with future change to competition	Home to several prominent car OEMs	distribution companies and a national transmission company.
	competition	grid operator realizes the grid connection		Grid operators seizing opportunity for extra revenue	under a fully state- owned holding
Market model	Independent	Independent	Integrated, public	Independent	Integrated, PPP

EV UPTAKE SCENARIOS – INTERNATIONAL BENCHMARK (1/2)

CGEM

EV UPTAKE SCENARIOS

	Total EV by 2025	Total EV by 2030	Total EV by 2035	EV uptake by 2035	Share of Ev- uptake by 2035 ****	Saved Emission s(Tons eqCO2/y) *	Charging Infrastructure (No. EVSE)**		Charging infrastructure estimated cost ** (MAD)
Pessimistic	3 GWh/year 1700	10 GWh/year 5700	37 GWh/year 20300	7500	3%	15160	2780	720 MW Normal Chargers: 1946 Fast Chargers: 834	Normal Chargers: 72 mio Fast Chargers: 138 mio
Reference	4, 5 GWh/yea r 2500	84 GWh/year 46500	471 GWh/year 258500	75000	30%	193047	33350	2 GW Normal Chargers: 23450 Fast Chargers: 10050	Normal Chargers: 868 mio Fast Chargers: 1,7 Mrd
Optimistic	6,4 GWh/year 3500	135 GWh/year 74000	775 GWh/year	120000	46%	317403	54500	3 GW Normal Chargers: 38150 Fast Chargers: 16350	Normal Chargers: 1,4 Mrd Fast Chargers: 2,7 Mrd

* Assumptions for CO2 emissions calculation:

- Energy consumption per EV is around 0.2 kWh / km.
- The daily journey considered is 25 km / day.
- Emissions of a fuel vehicle: 132 gC02 / km (Diesel), 120 gC02 / km (Petrol).
- The national electricity grid renewable share is 52% by 2030 (20% Solar, 20% Wind, 12% Hydro), the power grid's carbon footprint is 288 gC02 / kWh

- IEA: worldwide average in 2021 is 2.4 kW per EV

** Assumptions for charging infrastructure cost estimation:

- The European Union (AFID) recommends to have minimally 1 charging point per 10 vehicles.
- The share of normal chargers is estimated at 70%, and fast chargers at 30%.
- The cost of normal chargers (22-50kW) is estimated at 10 000/100 000 MAD, the cost of fast chargers (100-200kW) is about 150 000 - 200 000 MAD
- *** Market estimation:
- 260 000 cars by 2035

E-Bus UPTAKE SCENARIOS

	Total E-Bus by 2025	Total E-Bus by 2030	Total E-Bus by 2035	E- Bus uptake by 2035	Share of EV- uptake by 2035 ***	Saved Emissions (Tons eqC02/y)*	Char	rging Infrastructure (No. EVSE)**	Charging infrastructure estimated cost *** (MAD)
Pessimistic	1,6 GWh/year 12	5 GWh/year 37	16 GWh/year 119	30	7,5%	880	37	4 MW Normal Chargers: 19 Fast Chargers: 19	Normal Chargers: 1,85 mio Fast Chargers: 3,7 mio
Reference	2 GWh/year 15	20 GWh/year 145	84 GWh/year 616	200	50%	4600	214	21 MW Normal Chargers: 107 Fast Chargers: 107	Normal Chargers: 10,7 mio Fast Chargers: 21,4 mio
Optimistic	2,7 GWh/year 20	38 GWh/year 280	179 GWh/year 1310	400	100%	9780	428 Normal Chargers: 214 Fast Chargers: 214		Normal Chargers: 2,14 mio Fast Chargers: 42,8 mio

* Assumptions for CO2 emissions calculation:

- Energy consumption per E-Bus is around 1,5 kWh / km.
- The daily journey considered is 250 km / day.
- Emissions of a fuel vehicle: 132 gC02 / km (Diesel), 120 gC02 / km (Petrol).

 The national electricity grid renewable share is 52% (20% Solar, 20% Wind, 12% Hydro), the power grid's carbon footprint is 288 gC02 / kWh.

- ** Assumptions for charging infrastructure cost estimation:
- 3 charging points per 10 vehicles.
- The share of normal chargers is estimated at 50%, and fast chargers at 50%.
- The cost of normal chargers (50kW) is estimated at 100 000 MAD, and the cost of fast chargers (200kW) is about 200 000 MAD
- *** Market estimation:
- 400 urban-buses by 2035

E-Moto UPTAKE SCENARIOS

	Total E-Moto by 2025	Total E-Moto by 2030	Total E-Moto by 2035	E-Moto uptake by 2035	Share of EV - uptake by 2035 ***	Saved Emissions (Tons eqCO2/y)*	Charging Infrastructure (No. EVSE)**	Charging infrastructure estimated cost *** (MAD)
Pessimistic	1,4 GWh/year 7500	2,5 GWh/year 13480	5,7 GWh/year 31460	7330	3,3%	23495	7 MW Normal Chargers: 3879	Normal Chargers: 1 mio
Reference	2 GWh/year 11000	1 0 GWh/year 54000	30 GWh/year 164000	35000	16%	122480	33 MW Normal Chargers: 19900	Normal Chargers: 4,8 mio
Optimistic	1,4 GWh/year 12500	16,6 GWh/year 91000	80 GWh/year 438000	150000	68%	327111	100 MW Normal Chargers: 58800	Normal Chargers: 28 mio

* Assumptions for CO2 emissions calculation:

- Energy consumption per EV is around 0.02 kWh / km.
- The daily journey considered is 25 km / day.
- Emissions of a fuel vehicle: 132 gC02 / km (Diesel), 120 gC02 / km (Petrol).
- The national electricity grid renewable share is 52% (20% Solar, 20% Wind, 12% Hydro), the power grid's carbon footprint is 288 gC02 / kWh.
- ** Assumptions for charging infrastructure estimation:
- The European Union (AFID) recommendation for EV was considered for the above calculations
- The cost of chargers is estimated at 250 MAD
- *** Market estimation:
- 220 000 two-wheelers by 2035

EV UPTAKE SCENARIOS – INTERNATIONAL BENCHMARK (2/2)

Policy initiatives on the phase-out of fossil fuel vehicles

Map was produced by **The Partnership on Sustainable, Low Carbon Transport**. For more information, please refer to E-Mobility Trends and Targets: https://bit.ly/2FQbX9g

CURRENT ELECTRIC MOBILITY : BARRIERS

Several challenges for upscaling electric mobility in Morocco are addressed in this roadmap:

- The current number of charging stations is not able yet to sustain a strong growth of electric vehicles and deters potential EV buyers
- Awareness of EV and their benefits among drivers is in general still low
- Electric vehicles are not taken into account yet in urban planning and development
- The added electricity peak demand on the power grid (ONEE study ongoing)
- Missing suitable insurance offers for electric vehicles
- Regulations of EVs charging services

CURRENT ELECTRIC MOBILITY : BARRIERS

- **Safety** concerns of EV batteries in local climate
- Lower-income households have a need for a second-hand market of EVs in order to replace their existing vehicles
- **Human resources** and infrastructure for training have to be consolidated
- The support network and the local production of spare parts required for maintenance and repair of EVs are undeveloped yet

NATIONAL ROADMAP

EV ECOSYSTEM AND GOVERNANCE

1A : GOVERNANCE

- 1A.1 Initiate a public-private National Commission to coordinate the set-up of the EV roadmap (Ministery of Transport and Logistics, Ministery of Interior, Ministery of Economy and Finance, Ministery of Energy Transition and Sustainable Development, Ministery of Industry and Trade, ONEE, CGEM, APIM, Energy Federation, AMEE, IRESEN)
- 1A.2 Establish a public-private partnership between businesses, universities, research institutions and the government. (installed by the government to promote electric mobility developments, to align these with international best practices and to provide policy advise to government)
- 1A.3 Consolidate the national knowledge platform, for collecting and sharing information related to EV and charging infrastructure; Enable strong collaboration with universities and research institutions

1A : GOVERNANCE

- 1A.4 Define and implement a hybrid market model for charging infrastructure governance for adopting an independent model
- 1A.5 Formulate a national charging plan in line with the national scenarios, which includes agreements between public and private parties
- 1A.6 Establish a knowledge and innovation center for EV, smart charging and protocols. It guides market parties and governmental agencies on matters related to the connection of charging stations to the grid. (like the center established by ELAAD, the Dutch Grid Operator
 - 1A.7 Prepare Professional Certificate in Electric Cars (ex. Delft University edX)

1B: VALUE CHAIN

- 1B.1 Manufacturing of EV components and charging hardware; charging services: platform and app, charge card and billing, and energy and grid.
- 1B.2 Build partnerships with foreign partners to develop integrated EV production research through joint working groups and explore joint financing, research, training mechanisms and joint production.
- 1B.3 Continue to invest in triple-helix locations like the Green Energy Park and comparable initiatives in order to foster a close transfer of knowledge between industry, research and government.
 - 1B.4 Raise awareness of the economic opportunities that EV and charging can bring in the near future by taking the lead in organizing international summits creating a regional platform for policy makers, industry leaders, research experts and global innovators in the field of EV and charging.
- 1B.5 Require public tenders to mandate that at least 50% of charging infrastructure value is added by local manufacturing or assembly.

3. REGULATORY FRAMEWORK AND INCENTIVES

2A : REGULATORY FRAMEWORK

- 2A.1 Formalise "charging services" as non-regulated services to provide a clear legal framework on EV charging and the delivery of energy and implement a robust connection and tariff construction based on international best practices.
- 2A.2 Redesign the vehicle registration cost calculation based on tailpipe emissions.
- 2A.3 Formalize the checklist for import, registration and fitness test for new and reconditioned EVs.
- 2A.4 Separate registration of hybrid and fully electric vehicles.

2A : REGULATORY FRAMEWORK

- 2A.5 Mandate (national) goals for newly purchased urban buses (e.g. 50% e-bus acquisition in 2030, 100% urban buses electric in 2035).
- 2A.6 Mandate national goals for public procurement procedures for public administration fleet vehicles, e.g. an annually required renewal of 5% of the fleet with electric vehicles from 2024 on.
- 2A.7 Integrate gradually charging stations into the specifications of petrol stations
- 2A.8 Encourage municipalities to launch tenders for charging stations in partnership with the private sector (PPP)

2A : REGULATORY FRAMEWORK

- 2A.9 Adapt local electrical installation norms to incorporate safe EV charging installation requirements
- 2A.10 Formalize national charging standards for regular and fast charging, in agreement with the industry, based on European standards, to enable interoperability. Update existing norms. (Appendix H - EV related protocols)
- 2A.11 Implement low-emission zones in medinas (2026), and in cities (2028).
- 2A.12 Implement zero emission zones in medinas (2030), and in cities (2035-2040).

2B: INCENTIVES

- 2B.1 Provide financial incentives for zero emission vehicles until at least 2026
- 2B.2 Reduce customs duties for EV spare parts and standalone batteries to the same level as assembled EVs (2,5%)
- 2B.3 Reduce import duties for charge points until local production meets demand
- 2B.4 Encourage local zero emission public transport buses
 - 2B.5 Provide 'green loans' for zero emission purchase of taxis and commercial fleets.

2B: INCENTIVES

- 2B.6 Reduce the value added tax for EV and charging related goods incl. standalone batteries and spare parts
- 2B.7 Reduce or remove highway tolling fees for electric vehicles
- 2B.8 Provide subsidies to deploy an initial fast charging network
- 2B.9 Allow priority public parking for electric vehicles
- 2B.10 Simplify the permitting process related to charge point installation
- 2B.11 Implement a fast track for permits for electric taxis
- 2B.12 Assign designated "e-taxi stops" on privileged locations in cities and airports

Minimal Infrastructure

- 3.1 Facilitate a coalition of first-movers to set clear objectives for the share of electric vehicles in their fleets
- 3.2 Map locations with major potential for charging demand and review against electric grid expansion (ONEE study)
- 3.3 Support property developers to incorporate charging infrastructure in large-scale urban renovation or new building projects

Minimal Infrastructure

- 3.4 Coordinate and prepare initial tenders for public/private EV charging infrastructure in the 6 prioritized cities (with a population over 500.000) and in 15 Second-tier other cities
- 3.5 Integrate gradually charging stations into the specifications of petrol stations
 - 3.6 Encourage municipalities to launch tenders for charging stations in partnership with the private sector (PPP)
 - Require local charging station manufacturers as subcontractors of CPOs implementing the tenders
 - Ensure transparent charging pricing
 - Implement a strategic placement strategy
 - Allocate public funding to encourage private investment after this preparation phase

	EV charger	s for 2025	Minimum required number of charging points per petrol stations	Total number of charging points in petrol stations	Total required number of charging points envolving PPP/Municipalities
		Casablanca	6	30	35
		Rabat			
	Prioritized	Agadir			20(acchoity)
	cities	Marrakech	3	15 (each city)	20 (each city)
		Tanger			
		Fès			15
		Meknès			
		Mohammedia			
		Oujda			
		Kénitra			
		Eljadida			
_		l etouan	2	8 (each city)	8 (each city)
	Second-tier	Sale			
	cities	Sati			
	Unico	Errachia			
		Réni-Mellal			
		Nador			
		Larache			5
		Laavoune	1(each city)	4 (each city)	6
		Taza	(ouen enty)	(caon only)	5
				Min 1x EV chargers at 22 kW	U
	Charging infr	astructure		Min 1x EV chargers at 22 KW	EV chargers at 11kW/22 kW
	T - 4 - 1	- f - h			0/0
	i otal number	of charging	points in cities	UV	242
	Total require	d number of	charging points in Highways	10	0
	Total of chare	iers		45	50 (27 MW) (35 mio. MAD)

Minimal Infrastructure

- 3.7 Select 100 locations **fast charging locations** along national highways and around city edges
 - Ensure at least one fast charging location for each 100 kilometers of main expressway and at main highway hubs (i.e. interchanges)
 - Determine best-suited locations in cooperation with relevant stakeholders;
 - License commercial parties to install and operate fast charging infrastructure along highways

3.8 Stimulate solar power charging solutions by networking between the solar power sector and emerging EV charging sector

Awareness Campaign

- 3.9 Launch an EV communications strategy focused on the positive impact of EVs in cooperation with taxi and fleet companies
- 3.10 Provide a free "Total Cost of Ownership" online tool for fleet owners and taxis
 - Take away uncertainty by giving insight into the cost factors of EVs and charging infrastructure and stimulate a view on total cost of ownership rather than purchase cost
- 3.11 Establish an EV training program for emergency services and maintenance
- 3.12 Consolidate the knowledge sharing platform and networking events for fleet owners
 - Include a central information hub with data on EV and charging in the knowledge platform

Smart charging strategy

- 3.13 Prepare a phased smart charging strategy;
 - Include pilot projects that also include innovative solutions like vehicle-to-grid (V2G)
 - Plan for the rollout of smart meters (a precondition for smart EV grid integration)
- 3.14 Develop a National Battery Plan to support local manufacturing, maintenance, second-life applications and battery recycling
- 3.15 Launch a Battery Competence Center to bundle knowledge and strengthen the competitive position of Morocco

ROADMAP **AND POLICY** PLAN

Overview of all recommendations in a roadmap and a four-year policy plan.

PHASE I : LAUNCH PHASE

- This **first stage covers the period 2023 to 2026** and aims to shape the electric mobility market as well as to **put in place the appropriate governance: a national commission (public-private)** and should be structured into different executive committees whose mission is to guide and support the competent bodies in the deployment of actions in the different phases at the level of each of the axes and to **support the elaboration of the regulatory and normative framework**. Thus, the **objective of achieving a public minimal charging infrastructure (450 chargers: gasoline stations and communes)** is to be considered by 2025.
 - In addition, this period will see the **advent of local manufacturers of electric vehicles and their spare parts as well as producers of charging solutions**, **thus allowing the Kingdom to position itself on an important part of the value chain.** This local integration will thus make it possible **to strengthen the national charging infrastructure on major roads and major Moroccan cities (6 priorities cities and than 15 other cities)**. In terms of governance, a hybrid market model will be put in place, where several **key partners will be solicited for the installation of public charging infrastructures**. Thus, through the first actions carried out by government institutions, these pioneering actions will serve as a basis for a rise in power during the second phase.
 - A gradual transition of public transport means taxis and buses should also be taken into consideration.

PHASE II : RAMP UP PHASE

- This phase will span the period **2027 to 2030 and will capitalize on the achievements of the previous phase**. Furthermore, a reassessment of the incentive measures will be necessary in order to meet the specific needs of this stage. **Urban buses and taxis could reach a 50% market share in 2030, followed by two- and three-wheeled vehicles which could reach 26% in 2030 and cars 18% market share.**
- The **deployment of public charging infrastructure** will have to be in line with the **evolution** of the fleet of electric vehicles: nationally distributed public charging infrastructure including normal and fast chargers (7150 chargers).
- In addition, an **action plan will be defined for the supervision and analysis of the data collected**, while **organizing workshops to raise awareness**, share and promotion of the electric mobility market in order to inform stakeholders in the public and private sectors.

PHASE II : RAMP UP PHASE

- The local production of batteries should be considered as a crucial element of the value chain in Morocco. Indeed, automotive industrialists such as Renault, Stellantis and Tesla have announced a drop in the cost of lithium-ion batteries by 2030 of up to \$80/kWh compared to \$150/kWh currently. This will allow a better positioning of Moroccan industrialists on the battery value chain, while promoting local materials.
- On the other hand, a **circular economy approach should be considered through the recycling of batteries used in renewable energy projects**. Furthermore, and following the necessary **regulatory and organizational changes, an independent market may emerge**. In terms of regulations, a **phased approach for low and zero emission zones will require the implementation of 0-emission vehicles in urban areas**.

PHASE III : MATURITY PHASE

- The two **previous phases will lead to the "maturity" phase** which will begin from 2031 to 2035, during which the **ecosystem will be set up and where the support and coordination of public authorities may be reduced**.
- Up to 100 % of the market share of urban Bus fleets, up to 46% electric cars and 75% two-wheelers by 2035.
 - The **public charging infrastructure will integrate more than 30000 chargers and will be deployed in all Moroccan cities.**
 - **Previous efforts will have made it possible to use and recycle batteries**. Indeed, considering all the links of the New Development Model, an unprecedented boom of decentralized renewable systems is expected, particularly in industrial applications, which will give batteries a second life.

It is also essential to **continuously assess the impact of policy measures**, in order to be in sync with the evolution of prices and technology**. Incentives may eventually be removed as electric vehicles** will in most cases have reached price parity with fossil fuel vehicles

ROADMAP TIMELINE

44

5.APPENDICES UPTAKE SCENARIOS CHARGER COST - ENERGY

APPENDIX I/ EV UPTAKE SCENARIOS

R		2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036
Total EV <i>I</i> year		1500	2500	4500	8500	15500	26500	41500	61500	87000	119000	156000	258500	33350
EV uptake /year		1000	2000	4000	7000	11000	15000	20000	25500	32000	37000	46000	75000	
Chargers			450					6150					33350	
Charoing	Normal Chargers		315					4305					23345	
Infrastructure	Fast Chargers		135					1845					10005	
Charging infrastructrure	Normal Chargers		9450000					129150000					700350000	
estimated cost *** (,-MAD)	Fast Chargers		27000000					36900000					2001000000	
P		2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036
Fotal EV <i>I</i> year		1500	1700	2100	2700	3500	4500	5700	7200	9200	11800	15300	20300	2780
EV uptake /year		200	400	600	800	1000	1200	1500	2000	2600	3500	5000	7500	
Chargers			210					720					2780	
Charging	Normal Chargers		147					504					1946	
nfrastructure	Fast Chargers		63					216					834	
Charging nfrastructrure	Normal Chargers		4410000					15120000					58380000	
estimated cost ···· (,-MAD)	Fast Chargers		12600000					43200000					166800000	
0		2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	203
lotal EV <i>I</i> year		1500	3500	7000	13000	24000	44000	74000	114000	169000	239000	324000	425000	5450
V uptake /year		2000	3500	6000	11000	20000	30000	40000	55000	70000	85000	101000	120000	
Chargers			700					11400					54500	
harging	Normal Chargers		490					7980					38150	
nfrastructure	Fast Chargers		210					3420					16350	
Charging nfrastructrure	Normal Chargers		14700000					239400000					1144500000	
timated cost	Fast Chargers		42000000					684000000					3270000000	

46

APPENDIX II/ E-Bus UPTAKE SCENARIOS

R		2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036
Total EBUS /yea	r	10	15	25	40	65	100	145	205	280	365	456	616	816
EBUS uptake lye	ear	5	10	15	25	35	45	60	75	85	91	160	200	
Chargers		2	4	8	14	16	24	35	50	63	92,5	124	164	214
Charging	Normal Chargers	1	2	4	۲	8	12	17,5	25	34,5	46,25	62	82	107
Infrastructure	Fast Chargers	1	2	4	7	8	12	17,5	25	34,5	46,25	62	82	107
Charging infrastructrure	Normal Chargers	100000	200000	400000	700000	800000	1200000	1750000	2500000	3450000	4625000	6200000	8200000	10700000
estimated cost (,-MAD)	Fast Chargers	200000	400000	800000	1400000	1600000	2400000	3500000	5000000	6900000	9250000	12400000	16400000	21400000
Р		2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036
Total EBUS /yea	r	10	12	15	19	24	30	37	46	58	73	94	119	14.9
EBUS uptake ly	ear	2	3	4	5	6	7	9	12	15	21	25	30	
Chargers		1	3	4	5	6	8	10	12	15	18	24	30	37
Charging	Normal Chargers	0,5	1,5	2	2,5	3	4	5	6	7,5	э	12	15	18,5
Infrastructure	Fast Chargers	0,5	1,5	2	2,5	3	4	5	6	7,5	э	12	15	18,5
Charging infrastructrure estimated cost	Normal Chargers	50000	150000	200000	250000	300000	400000	500000	600000	750000	900000	1200000	1500000	1850000
•••• (MAD)	Fast Chargers	100000 2024	300000 2025	400000 2026	500000 2027	600000 2028	800000 2029	1000000 2030	1200000 2031	1500000 2032	1800000 2033	2400000 2034	3000000 2035	3700000 2036
Total EBUS /yea	ar	10	20	40	70	120	190	280	400	550	740	990	1310	1710
EBUS uptake /y	ear	10	20	30	50	70	90	120	150	190	250	320	400	
Chargers		4	8	16	28	36	48	70	100	138	185	248	328	428
Charging	Normal Chargers	2	4	8	14	18	24	35	50	63	92,5	124	164	214
Infrastructure	Fast Chargers	2	4	8	14	18	24	35	50	69	92,5	124	164	214
Charging infrastructrure estimated cost	Normal Chargers	200000	400000	800000	1400000	1800000	2400000	3500000	5000000	6300000	3250000	12400000	16400000	21400000
••• (,-MAD)	Fast Chargers	400000	800000	1600000	2800000	3600000	4800000	7000000	10000000	13800000	18500000	24800000	32800000	42800000

APPENDIX III/ E-Moto UPTAKE SCENARIOS

R	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036
Total eMOTO /year	6000	11000	17000	24000	32000	42000	54000	69000	87000	109000	134000	164000	199000
eMOTO uptake /year	5000	6000	7000	8000	10000	12000	15000	18000	22000	25000	30000	35000	40000
Chargers	1100	1700	2400	3200	4200	5400	6300	8700	10900	13400	16400	19900	0
Ρ	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036
Total eMOTO /year	6000	7500	8330	9330	10490	11820	13480	15480	18140	21470	25800	31460	38790
eMOTO uptake /year	1500	830	1000	1160	1330	1660	2000	2660	3330	4330	5660	7330	
Chargers	750	833	933	1049	1182	1348	1548	1814	2147	2580	3146	3879	0
0	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036
Total eMOTO	6000	12000	20000	30000	44000	63000	91000	131000	183000	248000	328000	438000	588000
eMOTO uptake /year	6000	8000	10000	14000	19000	28000	40000	52000	65000	80000	110000	150000	
Chargers	1200	2000	3000	4400	6300	9100	13100	18300	24800	32800	43800	58800	0

APPENDIX III/ E-Moto UPTAKE SCENARIOS

R	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036
Total eMOTO /year	6000	11000	17000	24000	32000	42000	54000	69000	87000	109000	134000	164000	199000
eMOTO uptake /year	5000	6000	7000	8000	10000	12000	15000	18000	22000	25000	30000	35000	40000
Chargers	1100	1700	2400	3200	4200	5400	6900	8700	10900	13400	16400	19900	0
P	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036
Total eMOTO /year	6000	7500	8330	9330	10490	11820	13480	15480	18140	21470	25800	31460	38790
eMOTO uptake /year	1500	830	1000	1160	1330	1660	2000	2660	3330	4330	5660	7330	
Chargers	750	833	933	104.9	1182	1348	1548	1814	2147	2580	3146	3879	0
0	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036
Total eMOTO	6000	12000	20000	30000	44000	63000	91000	131000	183000	248000	328000	438000	588000
eMOTO uptake /year	6000	8000	10000	14000	19000	28000	40000	52000	65000	80000	110000	150000	
Chargers	1200	2000	3000	4400	6300	9100	13100	18300	24800	32800	43800	58800	0

APPENDIX / CHARGERS COST – INSTALLED POWER

2035									
Scénario réfé	rence		Nr	MAD	Somme totale [MAD]	besoin energetiqu	e b	esoin energé	tique total
	Chargeur normal	prix [MAD]	23450						
	22kW 70%	10000	16415	164150000	867650000	361130	712880		
	50kW 30%	100000	7035	703500000		351750			
				0				2019380	2 GW
	Chargeur rapide		10050	0					
	100kW 70%	150000	7035	1055250000	1658250000	703500	1306500		
	200kW 30%	200000	3015	60300000		603000			
Scénario pess	simiste								
			Nr	MAD	Somme totale [MAD]	besoin energetiqu	e b	esoin energé	tique total
	Chargeur normal	prix [MAD]	1946						
	22kW 70%	10000	1362,2	13622000	72002000	29968,4	59158,4		
	50kW 30%	100000	583,8	58380000		29190			
				0				720538,4	720 MW
	Chargeur rapide		834	0					
	100kW 70%	150000	583,8	87570000	137610000	58380	661380		
	200kW 30%	200000	250,2	50040000		603000			
Scénario opti	miste								
			Nr	MAD	Somme totale [MAD]	besoin energetiqu	e b	esoin energé	tique total
	Chargeur normal	prix [MAD]	38150						
	22kW 70%	10000	26705	267050000	1411550000	587510	1159760		
	50kW 30%	100000	11445	1144500000		572250			
				0				2907260	3GW
	Chargeur rapide		16350	0					
	100kW 70%	150000	11445	1716750000	2697750000	1144500	1747500		
	200kW 30%	200000	4905	981000000		603000			

وزارة الانتقال الطاقيي والتنمية المستدامية +.C.U.O+|\$C\$++€ |+¥E.Q+ ∧ +XC€+.O\$K.+

Rovaume du Maroo Ministère de l'Intérieur

وزاراه الخاخطية

زارة التجهيز والماء toEoUs⊙†ISEoUs ∧ UsEel MINISTÈRE DE L'ÉQUIPEMENT ET DE L'EAU

الإتحساد العسام لمقساولات المسغرب +ه، +ه-ه-toEo+toF+ I +E@Ol+321 I HE4O20 Confédération Générale des Entreprises du Maroc

Commission Economie Verte

Netherlands Enterprise Agency

